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A method is described for solving the integral equations governing Stokes flow in 
arbitrary two-dimensional domains. It is demonstrated that the boundary-integral 
method provides an accurate, efficient and easy-to-implement strategy for the 
solution of Stokes-flow problems. Calculations are presented for simple shear flow in 
a variety of geometries including cylindrical and rectangular, ridges and cavities. A 
full description of the flow field is presented including streamline patterns, velocity 
profiles and shear-stress distributions along the solid surfaces. The results are 
discussed with special relevance to convective transport processes in low-Reynolds- 
number flows. 

1. Introduction 
Many problems of physical interest involve the flow of fluids at low Reynolds 

numbers in two-dimensional geometries. In this paper we describe a procedure for 
the solution of these problems in arbitrary domains and examine detailed solutions 
for the specific problem of shear flow over ridges and cavities. A number of studies 
of Stokes flow in cavities have been motivated by the fundamental interest in the 
phenomenon of separated flow at low Reynolds numbers. Others have addressed 
specific problems such as estimating the hole-pressure error when inertial or non- 
Newtonian effects are included. More generally, a variety of interesting problems are 
associated with convective-transport processes in low-Reynolds-number flows. 

An interesting class of problems involving low-Reynolds-number convection arises 
when a surface is dissolving or being deposited by mass transfer. In  this case, there 
is a complicated interaction betwen the fluid flow and the convective mass transfer. 
The fluid flow affects the local-mass-transfer rates and the shape of the evolving 
surface, which in turn affects the flow pattern. In this way, surfaces of unusual and 
complex geometries arise. This sequence of events occurs in a number of physical 
processes. For dissolving boundaries these include natural erosion, as well as corrosion 
and etching. For surfaces of deposition the convective transport affects the micro- 
structure in the solidification of alloys and the deposition of films by electroplating 
or chemical plating. These last applications are extremely important in the fabrication 
of microelectronic components. 

Another type of problem for which convection plays an important role is the 
cleansing of a rough surface that has been exposed to contaminants or toxic 
compounds. Due to the presence of recirculating eddies in microscopic surface pores, 
it is very difficult to remove all traces of the undesired element. A precise description 
of the microscopic flow field can help determine the most effective procedure. 

There are a number of other areas in the industrial environment and in natural 
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systems where low-Reynolds-number flows are important. The industrial applications 
include the effect of surface roughness on lubrication, the design of polymer dies for 
favourable extension rates and the development of peristaltic pumps for sensitive 
viscous materials. In natural systems, low-Reynolds-number flows are important in 
biomedical applications and studies of animal locomotion. 

We have seen that there is a wealth of applications for low-Reynolds-number flows 
in quite arbitrary geometries. The solution of these problems requires an efficient 
method which does not depend on special choices of coordinate surfaces or grid 
spacings. In the present work we will describe a method which is well suited to these 
requirements. Before proceeding with our discussion we find i t  helpful to review past 
efforts in this area to set out the strengths and weaknesses of alternative strategies. 
Given the number of papers in this area, we will focus on the more limited subject 
of two-dimensional flows over ridges and cavities. 

Among the important analytical solutions in this area, we note the work of Moffat 
(1964) who showed the existence of an infinite series of recirculating eddies in corners 
and wedges. These solutions provide an illustration of the phenomenon of separated 
flow and give the local-flow pattern in a corner independent of the outer flow driving 
the motion. For the more specific problem of flow over a semi-infinite plane with ridge 
or depression, Takematsu (1966) considered flow over a rectangular trench of infinite 
depth, while Kim (1980) studied the complementary problem of flow over a ridge of 
zero thickness. O’Neill (1977), Davis & O’Neill (1977) and Wakiya (1975, 1978) 
studied shear flows past planes with cylindrical ridges and cavities. These papers 
provide valuable examples of flow over cavities for the special geometries considered. 
They determine the minimum depth for which separation occurs and show that the 
separation occurs not a t  the sharp edge of the cavity, but at  a finite distance along 
the cavity wall. Overall, these analytical solutions illustrate many of the basic 
features common to all cavity flows. For detailed studies of more general geometries, 
including finite rectangular cavities, we must turn to numerical calculations. 

A variety of numerical techniques have been used to study low-Reynolds-number 
flows, including finite differences, finite elements, eigenfunction expansions and 
integral equations. A comprehensive review of the many computations which have 
been made is given in the review article by Hasimoto & Sano (1980). In the present 
context we mention certain references which are characteristic of the different 
numerical methods. Pan & Acrivos (1967) used finite differences to study low- 
Reynolds-number flows in cavities driven by uniform translation of the top wall. 
O’Brien (1982,1983) has also used finite differences to study a variety of Stokes-flow 
problems involving cavities. Finite-element calculations for similar geometries 
include those by Malkus (1976) and Jackson & Finlayson (1982). Trogdon & Joseph 
(1982) and Sanders, O’Brien & Joseph (1980) used eigenfunction expansions for flow 
over cavities. In thelatter paper these were compared with finite-difference calculations 
and were found to be‘in good agreement. In the calculations cited above both 
Newtonian and non-Newtonian fluids have been considered. 

We see that a variety of methods have been used for Stokes flow in two-dimensional 
domains. Each of these methods has its strengths, but all have certain limitations 
when dealing with irregular geometries and infinite or semi-infinite domains. The 
finite-difference method and the eigenfunction expansions are most useful for regular 
geometries or rectangular boundaries. These methods can be adapted to more 
complex geometries, but become increasingly awkward to use. The finite-element 
method may be used in arbitrary geometries, but large numbers of elements are 
required to resolve fine surface detail. As the complexity increases computations 
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become quite expensive, and the selection of the two-dimensional grid becomes 
increasingly tedious. 

One method which is both efficient and easy to implement in arbitrary geometries 
is based on the reformulation of the Stokes equations in terms of an integral equation. 
In this method only the boundary of the domain is discretized, with the result that 
complicated boundaries can easily be represented and the number of unknowns 
increases only linearly with increasing resolution. The use of integral equations has 
been quite common in three-dimensional Stokes-flow problems. Youngren & Acrivos 
(1975) presented calculations for ext,erior flows past particles of arbitrary shape ; 
Rallison & Acrivos (1978) studied axisymmetric flow past deformable drops and Lee 
& Leal (1982) considered the motion of rigid spheres near deformable interfaces. 
Higdon (1979a, b )  used integral equations based on slender-body theory to study the 
motion of microscopic organisms. Given this widespread use for three-dimensional 
calculations, it is surprising that the integral equations have not been used extensively 
in two dimensions. There are perhaps two reasons for this. The first is that the simple 
problem of uniform flow past a two-dimensional body is a singular-perturbation 
problem for which the Stokes equations are not uniformly valid. Thus these problems 
have received less attention overall. Associated with this first reason is the fact that 
the fundamental solution or Stokeslet for two-dimensions is less well known because 
it too is singular a t  infinity. The second reason may be that the more traditional 
methods discussed above are feasible for two-dimensional calculations but much too 
expensive for three-dimensions. 

In  the present effort we employ the integral equations (sometimes referred to as 
the boundary-integral method) for the solution of Stokes equations in arbitrary 
two-dimensional domains. In choosing this direction we have two alternatives : to 
work with the fundamental solution of the Stokes’ equations in direct analogy to the 
three-dimensional calculations or to use the formulation in terms of the stream 
function and the biharmonic equation. Both methods lead to a Fredholm equation 
which is converted into a system of linear algebraic equations. In the biharmonic 
approach it can be shown that an iterative solution will converge for all geometries 
(Mikhlin 1957, p. 219) thus eliminating the need for a matrix inversion. In  practice 
this is not a major advantage, since the calculation of the matrix elements requires 
the most computational effort for systems of up to 200 boundary elements. 

Mir-Mohamad-Sadegh & Rajagopal (1 980) have used the biharmonic approach for 
flow over cavities, but have given only limited results with crude qualitative sketches 
of the streamlines. We prefer to work directly with the Stokes equations. The 
computational effort is the same in either case, but the use of the Stokes equations 
leads to the direct calculation of the surface force and velocity, rather than the 
fictitious source densities resulting from the biharmonic approach. We shall show that 
this method combines the features of ease of use, excellent accuracy and great 
computational efficiency. It would appear to be the best choice for Stokes flow in 
complicated domains. 

In  summary we have two objectives. The first is to present a clear description of 
the boundary-integral method, including an explanation of its numerical implemen- 
tation and a demonstration of its efficiency. The second is to use the method to 
examine shear flows over ridges and cavities, giving detailed streamline patterns and 
distributions of shear stress over the boundaries. These results are employed in a 
discussion of the effect of the flow pattern on convective transport processes. 
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2. Mathematical formulation 
In  this section we transform the Stokes equations with boundary conditions into 

an equivalent set of integral equations. The simplest approach would be to cite the 
relevant results for three-dimensional flows and make the appropriate substitutions 
required for two-dimensions. We prefer to give a more detailed discussion, believing 
that many researchers may not be familiar with the exact assumptions and analysis 
involved. 

The basic equations governing flow a t  low Reynolds number are the Stokes 
equations 

V ' O  = - v p + p v 2 u  = 0, (1) 

and the continuity equation 
v - u  = 0. 

In the above equations u, the stress tensor for a Newtonian fluid, is defined in the 
standard form : 

A fundamental identity for Stokes equations, analogous to Green's identity, may 

(4) 

In this expression, u and u* are any two solutions of (1) and (2) with associated 
stress tensors u and u*. This identity is easily verified by direct differentiation and 
application of (1)-(3). When the identity is integrated over any volume of fluid, the 
divergence theorem may be applied to yield an integral formula known as the 
reciprocal theorem 

(5) 

be written 
a 

-(u,a;-ufaii) = 0. 
% 

js (ui a; ni - uf at* ni) dS = 0, 

Lorentz ( 1896). 
When the reciprocal theorem is applied with appropriate choices for the reference 

solutionsu*, (I* many useful results may be obtained (see e.g. Happel & Brenner 1973, 
chap. 5 and Hinch 1972). To obtain an integral formula suitable for our present 
purposes, we choose u* to be the fundamental solution for two-dimensional Stokes 
flow. Following a procedure introduced by Oseen (see Happel & Brenner 1973, 
pp. 79-81), we define 

s,(z) = aij In r -A 
r2 ' (6) 

2 . 2  

where 2 = x-x, and r = 121. The fluid velocity is then given by 

Physically, this may be interpretedas the velocity at  xinduced by a two-dimensional 
point force f at the point x,. The singular nature of u at infinity is consistent with 
the non-uniformity of the Stokes equations when there is a net force on a two- 
dimensional body. This singular behaviour is unimportant in the present circumstances 
because we shall be concerned with problems for which the Stokes equations are 
uniformly valid. 
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FIGURE 1 .  Sketch showing boundary surfaces for integral equations. 
(a) interior flows, ( b )  semi-infinite flows, (c) exterior flows. 

The stress associated with the velocity (7) is given by 

where qrk is defined as 

Similarly, the pressure is obtained in the form 

When the integral formula (5) is applied with u* and u* given by (7), (8), the 
boundary surface includes two components : S which represents all surfaces bounding 
the fluid domain and S, which is a circle or semi-circle excluding the point x = x,, 
(see figure 1). 

Evaluating the integral over S, in the limit as s+O yields 
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when the point x, is in the fluid domain, and 

when x, is on the boundary of the domain. 
In (11) and (12),&(x) is the surface-force vector defined as&(x) = vjk(x)nk. The 

surface integral (which in two-dimensions is merely a line integral) is taken 
counterclockwise around the outer boundary and the unit normal vector n points out 
of the fluid. 

The integral formula (12) combined with the boundary conditions for the flow yields 
an integral equation for the unknown quantities u or f around the boundary S. The 
exact form of the integral equation depends on the boundary conditions and the type 
of domain. We mention briefly the appropriate forms for interior flows, semi-infinite 
domains and exterior flows. 

For interior-flow problems, figure 1 (a), S may consist of fluid surfaces and solid 
surfaces surrounding the domain. The velocity u and surface force f or some 
combination of these is specified on all boundaries, and the integral formula may be 
used in its standard form (12). 

For semi-infinite problems, figure 1 (b), we typically specify the flow at infinity, e.g. 
simple shear flow, and require u = 0 on the solid boundary. In this case, the boundary 
S includes the semi-circle S" in addition to the solid surfaces S,. It is inconvenient 
to use (12) directly, because of the integral over S", so we define the disturbance 
velocity uD = U-u". Applying (12) with uD in place of u,  the integral over S" may 
be shown to vanish, and we have 

The domain of integration has been reduced to the solid surfaces. The integral 

For exterior-flow problems, figure 1 (c), we again define uD and can show that the 
equation results from the boundary condition uD = -u" on the solid surfaces. 

integral over S" vanishes provided that the total force on the body is zero, i.e. 

JSBf = 0.t 

Thus (13) is the appropriate integral formula for exterior flows with S,  designating 
all interior boundary surfaces. 

For exterior-flow problems in which all boundary surfaces are rigid and fixed with 
respect to each other, we may make one additional simplification. The integrals (12) 
with urn in place of u may be evaluated by applying the divergence theorem over the 
volume bounded by the interior boundaries. This result may be combined with the 
boundary condition uD = - u" to reduce (13) t o  the form 

I f  

We have given the appropriate form of the integral equations for the typical 
boundary-value problems which arise in two-dimensional Stokes flow. One further 

t If the total force on the object i s  not zero, then the Stokes equations are not uniformly valid 
and the outer boundary condition must be obtained by matching an outer expansion baaed on the 
Navier-Stokes equations. 
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point needs to be mentioned. For interior- or exterior-flow problems, the solution of 
(12) or (14) is not unique because an arbitrary constant may be added to the normal 
component off without changing the value of the integrals. This is merely a reflection 
of the fact that a constant pressure may be added without affecting the dynamics 
of the system. The non-uniqueness may be eliminated by specifying a reference value 
for the pressure at  any point on the boundary. This additional condition does not 
overconstrain the problem because all velocities defined by the integral formulas 
above automatically satisfy the integral mass balance 

u'n ds = 0. 

Thus the additional constraint on p is allowed because the specified boundary values 
of u are not independent. Finally, we note that this problem does not arise for 
semi-infinite domains, because it is implicitly assumed that the average value of p 
over S" is zero. 

I 

3. Numerical procedure 
The integral equations derived in the previous section provide a compact and 

elegant formulation of the boundary-value problem for the Stokes equations. 
Unfortunately, with the exception of a few special cases, we must resort to numerical 
methods for the solution of these equations. To obtain a numerical solution the 
continuous smooth boundary surface is replaced by a number of discrete boundary 
elements and the boundary values of u and f are expressed in terms of their values 
at  discrete boundary points xm. With these specifications, (12) may be written in the 
discrete form 

N N 

In this expression, the exact form of A ,  and B, will be determined by the specific 
discretization which is used. Equation (15) combined with the discretized boundary 
conditions, e.g. u specified at  x,, leads to a system of linear algebraic equations for 
the unknown values, e.g.flx,). This system may be solved using standard algorithms. 

We now turn our attention to the choices of discretizations for the boundary and 
functions, and the errors associated with these choices. For the boundary elements 
we might choose among straight-line segments, arcs, parabolas, splines or other 
curves. We find it most convenient to employ straight-line segments because this 
allows the analytical evaluation of the integrals along each segment. If analytical 
integrations were not used, the singularities in St, and T,,, would have to be dealt 
with before applying any numerical quadratures. For smooth boundaries the 
deviation of the discrete segments from the true boundary shape is of order a 2 ~ ,  where 
6 is the segment length and K is the local curvature. Upon evaluating the integrals 
in (12), we find a relative error of order 6 2 ~ 2 .  Given this quadratic error term, good 
accuracy may be obtained with a reasonable number of segments, and the use of more 
complicated boundary elements is unwarranted. Any gain in accuracy would be offset 
by the additional effort required for the numerical evaluation of the integrals. For 
piecewise smooth boundaries, such as a rectangle or the intersection of an arc with 
a plane, elements are chosen such that the corner lies at the end of a line segment. 
With this procedure, piecewise smooth boundaries may be treated with the accuracy 
stated above. 
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For the approximation of the functions u and f on the boundary we use simple 
polynomial expressions based on Lagrangian interpolation formulas. For an nth-order 
polynomial, the relative error in evaluating the integrals in (12) is of order or 
more specifically 6n+lf(n+1)/f. For the calculations in the present paper, we have used 
two different approximations : constant function values along each segment with an 
error 6 and quadratic polynomials with an error S3. In each of these cases the 
leading-order error in f is an odd function about the centre of the segment. For regions 
where the boundary is locally symmetric about the segment, the total integrand is 
odd and these integrals vanish. Thus the relative errors are of order a2 and s4 
respectively. 

When constant function values are assumed along each segment, the explicit 
expressions for Ag, and B,, are 

and 

In these integrals, t and n are the unit vectors tangent and normal to the nth segment, 
26, is the length and E is the local parametric variable along the segment. 

In the case of quadratic approximation a three-point Lagrangian interpolation is 
used, based on the function values at  the centre of the segments. The value of the 
function f along the nth segment is given by 

(18) 

8, and S,+, (see Carnahan, 

Having approximated the function f over each segment, we may now evaluate its 

f(8 = f,-,( W: E+ C?: E2)  +f,( 1 + 6+ ‘2; E 2 )  +f,+,( WF E+ &F 6”. 
The weights W,, &, are simple algebraic functions of 
Luther & Wilkes 1969, p. 27). 

integral and write 

We observe that the integral involves values off from neighbouring segments. To 
find A,, we collect terms involving f ,  from the nth segment as well as adjacent 
segments and obtain 

The expression for B,, may be found by substituting - qjk nk for Sij. 
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The error estimates given above for the function approximation must be modified 
for the case of a corner on a piecewise smooth boundary. The problem arises in the 
evaluation of the integral of q j k  nk. When the integral is evaluated for x, adjacent 
to the nth segment, the term xk nk is order PK for a smooth boundary, but only order 
6 for a corner. The resulting error is thus one order greater. This is no problem for 
the quadratic representation but can lead to an error of O( 1) in the immediate vicinity 
of the corner if constant function values are assumed. Specifically, the value of B, 
will have an O(1) error proportional to  Vu. It should be noted that, even in the worst 
case, the O(1) error occurs only on the segments adjoining the corner and has 
negligible effect on the solution away from this point. 

We have seen how the continuous integral equation is converted into a set of linear 
algebraic equations. In our calculations these equations were solved using Gaussian 
elimination with maximum row pivoting. The residuals were completely negligible 
for all systems considered, including matrices up to 250 x 250. The solution of the 
system of equations provided the values offon the boundary ; velocities in the interior 
of the domain were calculated using (1 1) with the integrals evaluated through the 
procedure described above. Streamlines were drawn by choosing appropriate starting 
points, calculating the velocity and integrating the ordinary differential equation 
dx/u = dy/w. The modified Euler method was used for the numerical integration of 
the ordinary differential equation with the step size chosen to provide a smooth 
appearance for the streamline. With this constraint on the step size the modified 
Euler method gave excellent accuracy, and higher-order methods were not justified. 

In the following sections we present the results of calculations for a variety of 
different geometries. Before proceeding with this discussion, we would like to analyse 
the numerical results for a number of special cases which confirm our error predictions 
and illustrate the accuracy of the boundary-integral method. First, we calculated the 
solution for a circular domain with a transverse velocity u = y2. This is representative 
of a driven cavity with smooth boundaries. The errors for both the constant and the 
quadratic approximations decreased uniformly as 62, the limiting error in this case 
being proportional to ~ ~ 8 ~ .  Numerically, the quadratic errors were consistently 5 the 
constant errors. Next, we considered a square domain with velocity u = y2, 
characteristic of a driven cavity with corners. In  this case the quadratic method 
should give an exact solution. The relative errors were consistent with this prediction, 
being of order which is the limit associated with round-off error in the computer. 
For the constant approximation, there was a persistent error of 20 yo on the corner 
segments, independent of 6. The persistent error decreased to 2 %  on the next 
segments and errors decreased as ae on all other segments. This is consistent with 
predictions. 

Next, we turn to problems involving semi-infinite domains. For shear flow over a 
circular crest, the streamlines are shown in figure 14 (b) while the shear stress is plotted 
in figure 15(b).  The errors in shear stress associated with the constant and quadratic 
approximations are given in table 1. The exact values listed are calculated from the 
solution of O’Neill(lQ77). For the constant forces there is a persistent error of 16% 
on the corner segments while the errors decrease as s2 over the remaining segments. 
The quadratic method gives an error O(S) on the corner segments because no finite 
number of segments can resolve the infinite sequence of corner eddies using a simple 
polynomial approximation. On all other segments the errors decrease as 62 and are 
roughly half the size of the constant-method errors. 

The streamlines for flow over a circular cavity are shown in figure 3 ( b )  while the 
shear stress is plotted in figure 5 (a). The exact values of the shear stress and numerical 
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errors are given in table 2. In  this problem the shear stress has an algebraic singularity 
(2-0.45551'3) at the corners 9 = 0. In the constant-force approximation this leads to 
large errors on the corner segment, as might be expected. The error at the base of 
the cavity decreases as s2, but along the wall (e.g. 9/n = 0.100) the error decreases 
only as 6. Because of the singularity the quadratic-force method offers little 
improvement over the constant-force method for this problem. Instead, we assume 
a singular force on the corner segment in the form stated above and use quadratic 
forces over all other segments. The integrals for the corners could not be evaluated 
analytically and were calculated using Gaussian quadratures after extracting algebraic 
and logarithmic singularities. The results of these calculations are listed in table 2. 
The relative error now decreases as S2 over the entire boundary including the corner 
segments. Note that the error trend a t  certain positions (e.g. e/n = 0.200) may 
appear better than S2, but this is fortuitous. 

In summary, we see that the boundary-integral method is capable of excellent 
accuracy even in problems involving singular force distributions. The constant-force 
method will be adequate for nearly all purposes except where extreme accuracy is 
required at all positions. For such problems the quadratic method or other variations 
will provide the necessary precision. It should be emphasized that the constant 
segment length used in tables 1 and 2 was chosen to show the error trend as a function 
of N. It is not the optimal distribution and significant improvements can be made 
by using progressively smaller segments in corners or regions where the curvature 
is large or where f changes rapidly. 

4. Shear flow over circular cavities 
We start our discussion of shear flows in semi-infinite domains by considering 

circular cavities in a uniform plane. Figure 2 shows the basic geometry and defines 
the geometrical parameters. This problem has been studied previously by O'Neill 
(1977) and Wakiya (1975, 1978), both of whom used bipolar cordinates to obtain 
analytical solutions. We choose to study this geometry for two reasons. First, as noted 
in the last section, it provides a check on the accuracy of our calculations. Second 
and more importantly, we note that the analytical solutions which have been 
obtained are in a rather inconvenient form. Thus neither of the authors above 
provided detailed streamline patterns nor distributions of shear stress over the 
boundaries. In the present study we provide this detailed information, which helps 
to illustrate more clearly the flow over circular cavities. 

The first cavity we consider is for angle a = 65.12O, corresponding to the deepest 
cavity for which the flow does not separate from the boundary wall. The streamlines 
for this flow are shown in figure 3(a) .  In  this figure, and in all streamline plots shown, 
the streamlines outside the cavity are drawn with equal spacing far upstream. 
Streamlines within a. separated cavity are spaced for maximum clarity. This choice 
was made to present the best view of the overall flow pattern. For shear flows such 
as studied in this paper, the conventional method of drawing streamlines with 
constant volume flux leads to an unfortunate spacing which obscures important 
details of the motion. All streamlines shown are accurate to within a plotted line 
width. 

The streamlines in figure 3 (a) show that the cavity has a rather weak effect on the 
major part of the flow but results in strong deceleration of the fluid adjacent to the 
boundary. A clearer view of the flow is given by examining the velocity profile along 
the symmetry axis of the cavity, as shown in figure 4(a) .  The vertical intercept at 
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FIGURE 2. Sketch showing geometry for circular cavities. 

FIGURE 3. Streamline patterns for simple shear flow over circular cavities. Undisturbed flow 
is u = yy, w = 0. ( a )  a = 65.12", ( b )  go", (c) 135'. 

the bottom implies duldy = 0 or zero shear stress. For all deeper cavities the shear 
stress will take on negative values corresponding to reversed flow in the cavities. 

The distribution of shear stress along the boundary for a = 65.12' is shown in 
figure 5 (a). The shear stress is approximately equal to its undisturbed value 7, = T" 

just upstream of the cavity, rises very rapidly to  become singular as i t  rounds the 
corner, and then drops quickly to reach zero at the centre of the cavity. A few points 
are worth noting. First, with respect to the discontinuous slope of the curve, we 
emphasize that this is merely to show the location of points where f is calculated. 
The Lagrangian interpolation used in the solution yields a smooth curve through these 
points. The singular behaviour of the shear stress at the corner is well known, as 
discussed by Dean & Montagnon (1949). 

For convective-transport processes at high Prandtl numbers, the local mass-transfer 
rate is proportional to the shear stress (see e.g. Lighthill 1950 or Acrivos 1960). Thus 
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-0.3 -0.2 -0.1 0 0.1 0.2 0.3 

u / Y L  

FIQURE 4. Velocity profiles for cavities in figure 3. Reference velocity is jL where 2L is the width 
of cavity. Vertical scale for each curve extends from bottom of cavity to plane surface. (a )  ----, 
a = 65.12'; ( b )  -, 90"; (c) ---, 135'. 

the very low value of the shear stress across the bottom of the cavity implies slow 
mass transfer in this area. At  the other extreme, transfer rates will be extremely high 
at the outer edge, resulting in rapid rounding of the corner if the surface is soluble. 

When a cavity in a plane boundary is deeper than a = 65.12", a large recirculating 
eddy forms in the cavity. This is shown in figure 3 ( b )  for a cavity a = 90". Two 
features are of interest. First, we see that the separation point is near, but not exactly 
at, the corner. This was previously noted by O'Neill (1977) and Wakiya (1975). The 
separation point for this case is at y approximately equal to -0.050. A second 
interesting feature of this pattern is that the separating streamline penetrates to a 
lesser degree than in the previous case. Thus we may conclude that the shallower 
cavity a = 65.12' in a certain sense represents the maximum disturbance to the outer 
flow. In comparing the two streamline patterns it is interesting to see how a relatively 
small increase in depth has resulted in an eddy which fills the entire cavity. 

The velocity profile and shear stress for the 90" cavity are shown in figures 4(b) 
and 5 ( b )  respectively. The velocity profile shows that the velocity in the eddy is quite 
small compared with the outer flow. This is reaffirmed in the shear-stress pattern, 
which shows a small nearly uniform negative shear stress over the entire cavity wall. 
The small value of the shear stress implies a small convective-transport rate at the 
cavity surface. Furthermore, the presence of the recirculating eddy prevents the 
passage of fresh fluid over the cavity wall. This can lead to an elevated concentration 
in the cavity, further decreasing the transfer rate. The inability of a shear flow to 
flush out deep cavities is a major problem in the cleansing of rough surfaces. 

An extreme example of a circular cavity is shown in figure 3 ( c )  for a = 135'. Once 
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FIGURE 5 ( a ,  b) .  For description see facing page. 
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FIGURE 5. Shear stress as a function of position along wall for three cavities in figure 3. 
Undisturbed shear stress 7, = 7O0. (a) a = 65.12', ( b )  go", (c) 135". 

again, we see that, as the cavity deepens, the disturbance of the outer flow lessens, 
while the attachment point approaches the corner. O'Neill (1977) has shown that, 
in the limit as a+ 180', the separation point reaches the corner and the separation 
streamline coincides with the plane. The velocity profile for the 135' cavity is similar 
to that for the 90' cavity except that the centre of the eddy is relatively higher in 
the cavity. The cavity velocities normalized with the width of the mouth are of the 
same order. 

The shear stress for the 135' cavity shows interesting behaviour. Rather than a 
nearly uniform stress as in the 90' cavity, we see a large negative value near the top 
of the cavity. Contrary to the appearance of the figure, the negative shear stress is 
not singular but reaches a large finite value. In  the limit as a approaches 180°, i.e. 
a slit separating two half-spaces, the negative value does become singular. Finally, 
we note that this large cavity presents an even greater problem for mass transfer than 
in the earlier cases, owing to the large volume of stagnant fluid and the small opening 
across which substances must diffuse. 

5. Shear flow over rectangular cavities 
In this section we continue our discussion of cavity flows by studying flow over 

rectangular cavities with width W and depth D.  Certain of these flows have been 
studied previously using numerical methods cited in the introduction. As with the 
circular cavities our goal is to provide a comprehensive description of the flows with 
special relevance to transport processes. We start by considering a cavity with aspect 
ratio WID = 1. The streamlines, velocity profile and shear stress are shown in 
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FIGURE 6. Streamline pattern for simple shear flow over rectangular cavities. Undisturbed flow 
is u = j L ,  v = 0. (a )  aspect ratio 1 : 1 ,  (b )  2 : 1, ( c )  3: 1, (d )  4: 1. 

figures 6 ( a ) ,  7(a) and 8(a) respectively. In  two major respects the flow is similar to 
that of the circular cavities: there is a single large eddy occupying the cavity, and 
the flow separates close to, but not at, the edge. One feature which is distinctly 
different is the presence of a sequence of eddies in the corners of the square, of which 
only the first can be seen in this figure. Moffat (1964) has described these eddies, 
showing that an infinite sequence exists obeying a simple similarity law. 

In  our calculations we have resolved only the first in the sequence of corner eddies; 
however, it is possible to use the boundary-integral method to resolve any number 
of eddies in the sequence. The procedure is to calculate the velocity at points along 
an arc or other curve enclosing the corner. This small sub-domain is then treated as 
a driven-cavity problem. Since the domain is smaller, finer resolution may be 
achieved. The process may be repeated as many times as required with ever smaller 
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-0.4 -0.3 - 0.2 -0.1 0 0.1 0.2 0.3 0.4 

u/YL 

FIGURE 7. Velocity profiles for cavities in figure 6. Reference velocity is j L ,  where L is the 
depth of the cavity. (a) -, aspect ratio 1 : 1 ; (a) ---, 2: 1 ; ( c )  ---, 3: 1 ; (d) ----, 4: 1. 

domains to resolve the desired detail. This is essentially analogous to the procedure 
used by Pan & Acrivos (1967) for their finite-difference calculations. One nice feature 
of the method is that the matrices A ,  and B,, do not need to be recalculated, since 
each sub-domain is geometrically similar to the preceding one. 

On examining the shear stress for the rectangular cavity, we see a pattern which 
is similar to that of the circular cavities. The principal features are the rapid increase 
leading to the singular value at the corner and the negative shear stress in the 
separated region of the cavity. The shear stress in the corners is zero, and 7, is very 
small along the entire bottom of the cavity. The velocity profile is quite similar to 
those of the circular cavities. The relatively smaller magnitude of the velocity is due 
to the choice of the height as the reference length. This is appropriate for the cavities 
shown in figure 6, since width is varying. 

Turning to our second rectangular cavity, with WID = 2, we see that the large 
central eddy has been stretched to fill the cavity, leaving elongated streamlines in 
the centre. In other ways the flow is similar to that in the 1: l  cavity with the 
sequence of eddies in the corners. The velocity profile, figure 7 (b), shows a stronger 
flow in the cavity with the centre of the eddy somewhat lower in the cavity. This 
increased velocity is to be expected since the cavity has a broader mouth across which 
the outer-driving flow may act. The shear stress, figure 8 ( b ) ,  confirms the stronger 
flow with a large negative value over the bottom of the cavity. In other respects the 
shear stress is nearly identical with that of the 1 : 1 cavity. 

For a still wider cavity, W / D  = 3, there is a dramatic change in the streamline 
pattern as shown in figure 6(c). First, we notice that the outer flow penetrates to a 
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FIQURE 8. Shear stress as a function of position along wall for cavities in figure 6. Undisturbed 
shear stress^,=^^. (a)aspectratio 1:1, ( b ) 2 : 1 ,  ( c ) 3 : 1 ,  (d)4:1. 
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substantially greater depth. Further, the bulk of the recirculating region is now 
occupied by two eddies enclosed by a double-lobed separating streamline with an 
oblique stagnation point in the fluid away from the boundary. The sequence of corner 
eddies appears as before. 

The deeper penetration of the outer flow is seen clearly in the velocity profile, 
figure 7 (c). We see only a weak, almost imperceptible, reversed flow across the centre 
of the cavity. In the bulk of the cavity the flow moves forward with greater speed 
than in the other examples. The shear stress, figure 8 (c), shows an unusual pattern 
reflecting the complicated flow in the cavity. Starting from its singular value at the 
corner, 7, drops rapidly to zero and remains negative over the entire sidewall before 
rising to zero near the corner. It remains negative over the bottom wall, but rises 
almost to zero at  the centre. The shear stress provides a clear indication of the 
weakness of the flow along the bottom wall. 

The widest cavity considered in our calculations is shown in figure 6(d), with an 
aspect ratio of 4: 1.  In this case the outer flow has penetrated to the bottom of the 
cavity leaving a pair of isolated eddies in the corners. It is interesting that such a 
minor increase in the width has resulted in such a large portion of the cavity being 
swept by the outer flow. The strong influence of the outer flow in the cavity is also 
seen in the velocity profile, figure 7 ( d ) ,  which shows a nearly linear profile similar 
to that of the undisturbed flow. As might be expected, the shear stress for this flow 
is similar to the 3 : 1 cavity except that 7, at the centre has risen above zero, reflecting 
the penetration of the outer flow. The overall picture of the flow for the 4:  1 cavity 
is characteristic of all wide cavities. As the width is further increased the shear stress 
will approach its undisturbed value all along the base of the cavity. The corner eddies 
will maintain approximately the same size relative to the height and are independent 
of the width for wide cavities. The shear stress in the corner remains virtually 
unchanged for all wide cavities. 

We have seen how the flow pattern changes as we proceed from a square cavity 
to greater widths; now it is appropriate to examine the behaviour as we approach 
greater depths. The streamline patterns for two cavities with aspect ratio 1 :2  and 
1 : 4 are shown in figure 9. For the 1 : 2 aspect ratio, a second compressed eddy has 
formed at the bottom of the cavity. For the deeper cavity three eddies have formed, 
with the upper two showing quite similar shapes. The aspect ratio of each of these 
eddies is approximately 1.40, which is nearly identical to the values reported by Pan 
BE Acrivos (1967) and Moffat (1964). With the present results, we are able to verify 
that the simpler systems studied by these authors are legitimate models for flow over 
deep cavities. 

The shear-stress distributions for the deep cavities are shown in figure 10. The shear 
stress around the corner and near the top of the sidewalls is similar to that observed 
for the shallower cavities. Deeper in the cavity the shear stress is negligible, reflecting 
the extremely weak flow a t  these depths. 

A better view of the flow deep in the cavities is shown in the velocity profiles in 
figure 11. For clarity we have used a different velocity scale a t  different depths. The 
dashed lines correspond to the depths at which the separating streamline crosses the 
centre. The weakness of the flows is seen by the fact that maximum velocity in the 
last eddy for the 1 :2 cavity is of order times the reference velocity (7O0/p) L, 
where L is the cavity width. For the deeper cavity, the maximum is lO-'(P/p) L. 
These minute velocities are responsible for the difficulty in observing experimentally 
even the second in the sequence of eddies in deep cavities. Finally, we note that the 
similarity between the eddies in the 1 : 4 cavity is also reflected in the velocity profiles. 
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FIGURE Streamline patterns for deep rectangular cavities. Undis irbed 
flow is u = j L ,  = 0. (a) aspect ratio 1 : 2, ( b )  1 :4. 

215 

With the exception of the sign reversal, the three profiles in figure 11 (b) are almost 
identical. 

Reviewing the flow patterns we have observed above, we may draw a few 
qualitative conclusions about convective-transport processes in flow over rectangular 
cavities. First, and most importantly, we conclude that a simple transverse shear flow 
is very ineffective in flushing out a deep cavity. If the flow is to penetrate to the bottom 
of the cavity, the width must be 3 4  times the depth. Even in this case, the sidewalls 
and corners of the cavity will be in a stagnant recirculating region. In all cases the 
singular shear stress at the corner will lead to high transfer rates with rapid eroding 
of the sharp edge. 
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FIGURE 11. Velocity profiles for deep cavities in figure. 9. Reference velocity is j L ,  where L is 
width of cavity. Dotted lines are depths of dividing streamlines. (a) aspect ratio 1 :2, (b) 1:4. 
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FIGURE 13. Streamline pattern for 2 :  1 rectangular cavity with O.1OD-radius rounded corners. 

5.1. The effect of rounded corners 

One of the features of flow over rectangular cavities which has raised some questions 
in the literature is the effect of rounded corners on the motion. Clearly, if the corner 
is rounded, the shear stress becomes bounded, but it is not clear how strongly this 
will affect the overall motion. In  the present work we consider a typical rectangular 
cavity with 2:  1 aspect ratio and evaiuate the effect of rounding the corners of the 
solid boundary. We start with a fairly sharp corner with radius equal to O.OlD, where 
D is the depth of the cavity. For this case the streamlines are indistinguishable from 
the pattern for a sharp corner as shown earlier in figure 6(b). It is only in the shear 
stress, figure 12 (a ) ,  that we see a measurable difference. For the rounded corner the 
shear stress develops a sharp peak, but the peak is finite with a value of 6.22 f 0.005. 
In other respects, the stress is the same as in the sharp-corner cavity. 

To assess the effect of a greater rounding of the edge, we next consider a cavity 
with corner radius 0.1D. The streamlines for this case are shown in figure 13. The 
pattern resembles the sharp-corner case, but the separation point is lower on the 
sidewall, and the outer flow penetrates slightly deeper into the cavity. The shear stress 
for the 0.1D cavity is shown in figure 12(b). The effect of the rounding is apparent 
as the maximum shear stress has fallen to 2.70 & 0.005. The stress distribution away 
from the corner is similar to the other cavities, although the magnitude of the stress 
at  the centre is slightly less, -0.148 compared with -0.160 for the sharp corner. This 
is a consequence of the deeper penetration of the flow into the cavity. 

6. Shear flow over circurar ridges 
Having completed our discussion of flow over cavities, we turn our attention to 

the problem of flow over two-dimensional ridges, starting in this section with circular 
ridges. This has been the subject of a number of studies, including the analytical work 
of O’Neill (1977) and Wakiya (1975, 1978) mentioned earlier. In addition, Davis & 
O’Neill(l977) and Jeffrey & Sherwood (1980) have examined these solutions as model 
problems for separated flow. 

In this section, we will provide a brief discussion of these flows, giving special 
consideration to the effect on convective transport. We start with the flow over a 
small ridge with a = 34O, where a is as defined previously except that the arc is now 
above the plane. This angle corresponds to the maximum angle for which the flow 
does not separate in the corners, (Moffat 1964). In  the streamline pattern, figure 14(a), 
we see negligible disturbance of the flow with only a smooth bending of the 
streamlines around the obstacle. From this picture of the flow field we might expect 
only a mild disturbance of the shear stress on the wall. Figure 15(a) gives quite a 
different view, as 7, is markedly changed from its uniform undisturbed value. The 
shear stress drops rapidly to zero in the corner and then rises to nearly twice rm a t  

8 FLM 159 
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FIGURE 14. Streamline pattern for simple shear flow over circular crests. (a) a = 34", ( b )  90". 

the crest. Clearly, the smooth streamlines give a deceptive indication of the strength 
of the flow disturbance. 

From the viewpoint of convective-transport processes, the stress distribution 
shown in figure 15 (a )  has important consequences. First, it indicates that there will 
be very poor mass transfer into or out of the corners. This presents a serious problem 
in those industrial applications where it is essential to provide a uniform coating over 
a ridge and the adjoining surface of the plane substrate. Conversely, there will be high 
mass transfer at the crest, owing to the large shear stress at  that point. This is 
consistent with the rapid smoothing which occurs on an eroding or dissolving surface. 
If a surface is being deposited by convective mass transfer, the rate of deposition will 
be largest at the crest, leading to a rapid steepening of the ridge. Thus, small 
disturbances on a surface will rapidly grow into sharp well-defined ridges. 

We study the change in the flow for steeper obstacles by considering a ridge with 
a = 90' in figure 14(b) .  Now the disturbance to the flow is more pronounced, with 
corner eddies a t  the base of the obstacle and a definite pinching of the streamlines 
over the crest. The shear-stress plot in figure 15(b) confirms this view. The 
acceleration of the fluid over the crest has resulted in a stress approximately 3 times 
the undisturbed value 7O0, while the weak recirculating flow in the eddies is shown 
by the small negative values of 7, in the corners. It is interesting t o  note how the 
smooth rounded obstacle has produced eddies much smaller than its vertical 
dimension. This contrasts with the results for cavities and for sharp crests, which we 
examine in the following section. 

For convective transport the shear stress for the 90" ridge amplifies the mechanisms 
described above. The rate of deposition onto the crest will be still greater, while the 
eddies effectively shield the base with a layer of stagnant fluid. Thus we see that the 
hydrodynamic effects on mass transfer will lead to the formation of sharp well-defined 
ridges, or, analogously, long thin filaments or dendrites. 

The two ridges discussed above show the essential features of flow over cylindrical 
obstacles. For greater values of a the corner eddies increase in size and the stress on 
the crest becomes even greater. Streamlines for large values of a may be found in 
the references cited earlier. 
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FIGURE 16. Streamline patterns for simple shear flow over rectangular 
crests. (a) aspect ratio 2:1, ( b )  l : l ,  (c) 1:lO. 

7. Shear flow over rectangular ridges 
Our final series of calculations involves flow over rectangular obstacles. We start 

by considering a rectangle with aspect ratio 2 :  1 as shown in figure 16(a). This has 
the same width-to-height ratio as the 90" circular crest studied in the last section. 
The streamline pattern shows major changes in the flow owing to the sharp profile 
of the obstacle. We note that the eddies are much larger and almost equal to the height 
of the ridge. This eddy configuration is characteristic of all rectangular ridges and 
is quite insensitive to aspect ratio. 

The shear stress for the 2: 1 ridge is shown in figure 17 (a). As before, the shear stress 
is singular aa the fluid rounds the corner of the solid boundary. One interesting feature 
is that the shear stress in the centre is lower than for the 90" crest. This is owing to 
the broad flat top of the ridge which provides greater surface area to decelerate the 
flow. In  other respects the shear stress is similar to the distribution for the circular 
crest. 

The 2: 1 rectangular obstacle is characteristic of all wide, flat ridges. As the width 
is further increased, the streamlines remain virtually unchanged. The shear stress 
upstream and downstream is also insensitive to the width. The only noticeable change 
is that the stress at the centre will gradually fall to the undisturbed value as the 
width increases. 

For narrower ridges the flow pattern changes only gradually until the aspect ratio 
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becomes quite small. Figure 16(b) shows a 1 : l  rectangular ridge with streamline 
pattern almost identical to the 2 : 1 case. Similarly, the shear stress in figure 17 ( b )  
closely resembles the previous case. The major difference in the 1 : l  plot is that a 
greater portion of the top surface is affected by the large shear stress at the corners. 

To see an appreciable difference in the flow behaviour we examine a thin obstacle 
with aspect ratio 1 : 10. Once again, the pattern of eddies, figure 16(c), is the same, 
but the long straight streamlines over the crest have been eliminated owing to the 
narrowness of the obstacle. The narrow plateau experiences an extremely large shear 
stress as the two corners are so close as to dominate the stress distribution on the 
top, figure 17 (c). A clearer view of this region is shown in figure 17 ( d ) ,  where 7, has 
been replotted on a different scale, showing only the top and sides of the ridge. We 
see that the minimum stress at  the centre is now 5 times the undisturbed value. It 
is interesting to note that the basic shape of the distribution is similar to that observed 
for the wider crests. 

Convective transport for flow over rectangular ridges shares many of the features 
of the earlier flows we have studied. As with the sharp-edge cavities, we infer that 
the corners of a soluble ridge will rapidly be dulled owing to the high transfer rates. 
For surfaces of deposition, the situation is similar to that for circular crests with the 
eddies shielding the base, while the high shear stress encourages the growth of the 
crest. A slight difference is that the stress distribution on the rectangular ridges would 
tend to favour the formation of twin peaks near the edges, with a depression in 
between. This could eventually lead to the development of two separate peaks which 
would be susceptible to further splitting. 
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